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Abstract
Atoms near a selected surface atomic site can be imaged in three dimensions
by photoelectron holography. The experiment involves acquiring hundreds or
thousands of angle-resolved photoemission spectra from a core level of the se-
lected atomic site over a wide range of photon energy and for a large number of
emission directions. For good image quality, the precision of the intensity mea-
surement must be better than ∼1% over the entire data set, but this is difficult to
achieve. Two methods based on differential measurements that allow intensity
self-normalization are presented here as a solution. One method is based on
measurements of intensity branching ratios between spin–orbit-split core level
peaks, and the other is based on measurements of logarithmic derivatives of
the intensity function. These methods are illustrated by two examples, As-
terminated Si(1 1 1) and Bi-terminated Si(1 1 1). The As/Si(1 1 1) results are
in excellent agreement with the accepted structure of the system, thus verifying
the efficacy of the methods. The Bi/Si(1 1 1) results resolve a long-standing
controversy regarding the correct structure of this system.

1. Introduction

Photoelectron holography is a direct method for surface atomic structure determination [1–15].
Experimentally, a large set of angle-resolved photoemission data is taken over wide ranges
of photon energy and emission angles from a core level derived from a specific atomic site.
The resulting intensity I exhibits oscillations as a function of photoelectron wave vector k due
to diffraction and interference effects. This function I(k) can be interpreted as a hologram.
Inversion of I(k) using a suitable algorithm, often referred to as a holographic transform, yields
a real-space three-dimensional image of the atomic structure near the emitting atom with each
neighbouring atom represented by an intensity maximum.

Experimental limitations stipulate discrete sampling of the hologram over a finite region
in k space, but the sampling grid must be large and dense enough to yield a clear atomic image.
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Depending on the desired resolution, the required data set can involve hundreds or thousands of
independent photoemission spectra. Data acquisition can last weeks, and data reproducibility
and error can be an issue of concern. Often, the sample surface must be refreshed or regenerated
during an experiment to avoid contamination effects. Such sample manipulation or processing
tends to introduce a stepwise variation in measured photoemission intensity. Other changes
can occur or become necessary during the course of the measurements, such as slit changes,
pass energy changes, and synchrotron beam re-injection. Furthermore, it is not unusual
that mechanical disturbances to the system such as people bumping the equipment cause
stepwise intensity changes. All of these problems can be corrected for with care by intensity
renormalization, but the accumulated error over time can still significantly degrade the quality
of the final image, which depends on the global precision of the function I(k).

To avoid such problems, it is best to carry out self-normalized measurements. Intensity
renormalization then becomes unnecessary, eliminating a major source of error. An additional
benefit is a considerable saving in experimental effort. This paper is a discussion of two
methods developed recently [11–15]. One of them is based on measurements of core-level
spin–orbit branching ratios. Such ratios are independent of the incident synchrotron beam
intensity and detector efficiency, and are fairly reproducible from sample to sample (even
though the intensity itself may vary significantly). The other method is based on measurements
of the logarithmic derivative of the intensity, which is especially useful in cases where the
spin–orbit splitting is too small for precise determination of the branching ratio. This quantity
is similarly insensitive to changes in experimental parameters. The two methods are, in fact,
very similar and closely related.

This paper begins with a brief review of the basics of photoelectron holography as
implemented in our studies. The problems associated with precise intensity measurements are
illustrated with examples. The two methods of intensity self-normalization are introduced,
compared, and verified with recent experimental results for As-terminated Si(111). These
methods are also applied to Bi-terminated Si(111), for which there has been a long-standing
debate regarding the correct structure. The holographic methods are able to resolve this issue.

2. Basis of photoelectron holography

The basic idea of photoelectron holography is that the direct photoelectron wave emanating
from an atom can be scattered by nearby atoms. All of these waves arrive at the detector, and
interference gives rise to sinusoidal modulations in the measured intensity I as a function of
photoelectron momentum k. Figure 1 illustrates the geometry. Here, rj represents the position
vector of the jth neighbour relative to the emitter. The geometrical path length difference
between the direct wave and the wave scattered off atom j is rj − k̂ · rj . Interference between
these two waves leads to an intensity modulation of the form cos(krj − k · rj + φ), where φ

is the electron scattering phase shift function. The amplitude of such modulation is typically
on the order of 10% of the total emission intensity. Data analysis involves extracting this
modulation, followed by a holographic transform to obtain the set of vectors rj.

In the so-called scanned-energy mode of photoelectron holography, the core level intensity
I is measured over a set of closely spaced photon energies hν for a fixed emission direction
k̂. The results, expressed as a function of the photoelectron wave vector k, yield a discretely
sampled I (k, k̂). Diffraction modulation is extracted to yield the intensity fine structure
function χ(k, k̂):

χ(k, k̂) = I (k, k̂) − I 0(k, k̂)

I 0(k, k̂)
∝
∑

j

Aj cos(krj − k · rj + φ) + · · · (1)
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Figure 1. A schematic diagram illustrating the photoemission geometry and the path length
difference between the direct photoemission wave and a wave scattered by the jth neighbour.

where I 0 is a smooth background function usually approximated by a low-order polynomial
fit to I, and Aj is the scattering amplitude associated with the jth emitter. Atomic cross section
variations and crystal field effects are the major contributing factors to the k dependence of
I 0.

The measurement of χ is repeated for many emission directions to yield χ(k) over a
dense, three-dimensional grid in k space. The image function is obtained by the holographic
transform

U(r) =
∣∣∣∣
∫ ∫ ∫

χ(k) exp(ik · r − ikr − iφ)g(k) dk

∣∣∣∣
2

(2)

where g(k) is a window function. The numerical integration is usually carried out first over k,
and then over the angles. Under the ideal conditions that g(k) ≡ 1, the data are continuously
sampled over the entire k space, φ = constant and the scattering amplitude A = constant, it is
straightforward to show

U(r) ∝
∑

j

A2
j δ(r − rj ). (3)

Thus, the image consists of a set of delta functions centred about neighbouring atoms. The
prefactors of these delta functions decay rapidly as a function of rj due to inelastic scattering
attenuation and wave expansion, and usually only the first nearest neighbours are detected.
Because the form of the kernel in the transform in equation (2) has rather low symmetry,
multiple scattering contributions are negligible except in rare pathological cases, and twin
images are absent [3, 4, 15].

Data from a real experiment never cover the entire k space, and a window function is
necessary. In our case, we employ a product of a Gaussian for the angular window function
and a Welch function for the k window function. Each has a smooth cutoff to avoid ringing
due to truncation of the Fourier-like integral. This reduction in k space integration results
in broadening of the delta functions into intensity maxima with a finite width in real space
governed by the uncertainty principle, and weak satellite or ghost features can appear.

The scattering amplitude A and phase shift φ can depend on k, and are generally unknown.
They depend on the scatterer identities and positions rj which are yet to be determined. The
k dependence of A is much less of a concern than that for φ. The phase shift problem is
similar to that in EXAFS [16–18]. In principle, a self-consistent or recursive analysis can
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be performed. However, to keep the method simple and straightforward, most authors opt
for a simple sweeping cone approximation [2–5]. In this approach, the angular window
function is set to be an angular Gaussian centred about −r̂. Each direction r̂ in the image
function is thus associated with a different angular cone, which is always centred about the
backscattering direction. Since the scattering amplitude A has a broad maximum in the
backscattering direction, an appropriately chosen sweeping cone limits the integration to this
important contribution. The k dependence of the backscattering amplitude is generally slowly
varying compared to diffraction modulation and can be neglected. The phase shift is stationary
in the backscattering direction, and the angular phase variation within a small cone can be
neglected. In evaluating equation (2), the phase shift φ is thus replaced by a calculated
backscattering phase shift function φ(k) [19–21], or in cases where the k dependence of the
back scattering phase shift is known to be insignificant, by a constant (zero). Thus, equation (3)
remains approximately valid, but the limited range of integration causes the delta functions to
broaden.

Setting φ to zero has the appeal of simplicity, and this approximation is often adopted.
In many cases, the k dependence of φ is approximately linear over the data range, or φ(k) ≈
ak + b. Within the small cone approximation, k · r ≈ −kr , and the kernel in equation (2)
becomes

exp(ik · r − ikr − iφ) ≈ exp[−2ik(r + a/2)] exp(−ib). (4)

Upon taking the absolute value in equation (2), the exp(−ib) factor becomes unity and does
not contribute to the image. If φ is ignored in equation (2), the backscattering bond length
extracted from the holographic transform becomes rj + a/2 instead of rj. Such bond length
error is familiar from EXAFS theory [16–18].

In the forward scattering direction, the scattering amplitude is a maximum, and the phase
shift is stationary as well. The peaking of the scattering amplitude in the forward direction
is known as the forward-focusing effect, and can be utilized to determine interatomic bond
directions. However, krj − k · rj = 0 for forward scattering, and the intensity data contain
little geometric information derived from interference. There is some residual modulation
from the cos(krj − k · rj + φ) term resulting from a finite angular cone, but this is minimal
at low photoelectron kinetic energy ranges typically employed in photoelectron holography.
Thus, the forward-focusing effect, while important at high kinetic energies, is generally not
utilized for holography. Because of the use of a backscattering cone in our analysis, scatterers
above the emitter do not contribute to the final image.

When a photoelectron leaves the surface, it undergoes refraction by the crystal inner
potential, which is the leading (constant) term in the Fourier expansion of the crystal potential.
This leads to bending of the beam and can cause image shift by a fraction of an Ångstrom.
The magnitude of the inner potential is generally not precisely known, but is typically on the
order of 10 eV. If a precision on the order of 0.1 Å is considered satisfactory for the image, a
nominal value of 10 eV for the inner potential can be used if no other information is available.

The extent and density of the sampling grid in k space, the choice of the cone angle and
the inner potential had a direct bearing on the image quality and accuracy. The phase shift
problem, or the use of a small cone, further limits the image resolution. It is straightforward to
carry out numerical simulations to determine or estimate these effects. Typically, holographic
methods are limited to a resolution of about 1 Å. This is often sufficient to determine the
overall bonding structure or to single out the correct model from a set of competing models.
For a more precise determination of the geometry, a least-square refinement of a model based
on the holographic results can be performed, as in LEED analyses [22].
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Figure 2. Photoemission spectra of the As 3d core as a function of photoelectron kinetic energy
for As on Si(1 0 0) obtained at various photon energies. The emission angles are indicated. The
dashed curve shows the intensity variation. The arrow indicates an intensity jump due to grating
change.

3. Differential measurements and intensity self-normalization

3.1. Errors in intensity measurements

Figure 2 is an example illustrating a problem with intensity measurements. It displays a set of
As 3d core level spectra for a monolayer of As adsorbed on Si(10 0) taken at various photon
energies for a particular emission direction as indicated. Diffraction intensity modulation as a
function of kinetic energy is evident. A finite jump in the measured intensity noted in the figure
is caused by grating change during the experiment to cover different photon energy ranges.
The last two spectra taken with a low-energy grating were repeated after the changeover to
a high-energy grating. A comparison of the two spectra before and after the grating change
yields an intensity renormalization factor that can be used to splice the two sets of data together.
Each renormalization generates a small error, which can propagate and accumulate as more
such renormalization steps are taken.

Figure 3 is another example, and displays the measured intensity from the As 3d core
for a monolayer of As adsorbed on Si(1 1 1). Again, diffraction modulation is evident, and
a finite jump in the data is caused by synchrotron beam re-injection. These data points have
been normalized to the reading of a synchrotron beam intensity monitor located just before
the sample and should be insensitive to beam intensity changes. Nevertheless, the trace shows
a jump, which is likely caused by a change in beam position or beam size. In this experiment,
the last data point before the re-injection was repeated afterwards to establish a scaling factor
in order to splice the two sets of data together. But again, this can cause error, and such
repeating measurements take time.

As mentioned earlier, diffraction intensity modulations are often on the order of 10%, and
so χ ≈ 10%. To obtain a reasonable image (with a 10% error), the uncertainty in χ should be
less than about 10%. Thus, the uncertainty in measured intensity should be less than 1%. This
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Figure 3. Photoemission intensity of the As 3d core as a function of photoelectron momentum
for As on Si(111). The data points (circles) have been normalized by the reading of a synchrotron
beam intensity monitor. The curve connects the data points. A jump in intensity indicated in the
figure is caused by storage ring re-injection.

level of precision and/or reproducibility is not easy to achieve. Reproducibility is especially
problematic if sample surface regeneration is involved. Intensity self-normalization methods,
to be discussed below, avoid these problems [11–15].

3.2. Derivative photoelectron holography

The logarithmic derivative of the intensity, L(k, k̂), is determined as a function of k for a given
emission direction k̂. A differential measurement involving two successive spectra with a
small difference in photon energy (or photoelectron wave vector) is carried out to yield

L(k, k̂) ≡ I ′(k, k̂)

I (k, k̂)
= I

(
k + �k

2 , k̂
)− I

(
k − �k

2 , k̂
)

1
2

[
I
(
k + �k

2 , k̂
)

+ I
(
k − �k

2 , k̂
)]

�k
. (5)

This depends on the ratio between the two measured intensities and is thus insensitive to the
incident beam intensity and detector efficiency, as long as the relevant experimental conditions
are kept constant during the measurement of the two spectra. Global precision of intensity
measurement is thus unnecessary. The intensity function itself can be deduced by integration
(apart from an unimportant integration constant):

I (k, k̂) = exp

(∫
L(k, k̂) dk

)
. (6)

The rest of the holographic inversion procedure is the same as discussed above.
Alternatively, one could subtract a smooth background function from L(k, k̂) to highlight

the oscillatory part due to diffraction. The result is a fine structure function for the logarithmic
derivative

ζ(k, k̂) = L(k, k̂) − L0(k, k̂). (7)

From equations (1), (5) and (6), it is straightforward to show

χ(k, k̂) = exp

(∫
ζ(k, k̂) dk

)
− 1. (8)

Thus, one can deduce χ from ζ without explicit evaluation of I.
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3.3. Branching ratio photoelectron holography

Spin–orbit splitting of a core level can give rise to two resolvable photoemission peaks with
slightly different values of k. Each spectrum actually contains two measurements, and the
branching ratio between the two peaks is independent of the incident beam intensity and
detector efficiency. We adopt the following definition for the branching ratio:

B(k, k̂) ≡
Il− 1

2
(k − �k, k̂)

Il+ 1
2
(k, k̂)

(9)

where l is the orbital angular momentum, l ± 1
2 are the total angular momenta and �k is

the difference in k between the two components. Each spin–orbit-split component shows
diffraction modulation. Since there is a slight offset in k, these modulations do not cancel
out when the branching ratio is taken. This ratio is related to the derivative of the intensity
function as in the previous case.

The modulations in B can be extracted to yield a branching-ratio fine structure function ξ

defined below

ξ(k, k̂) = B(k, k̂) − B0(k, k̂)

B0(k, k̂)
(10)

where B0 is a smooth background function. This can be related to the χ function. From
equation (1), I = I 0(1 + χ), and equation (9) can be rewritten as

B(k, k̂) =
I 0
l− 1

2
(k − �k, k̂)[1 + χ(k − �k, k̂)]

I 0
l+ 1

2
(k, k̂)[1 + χ(k, k̂)]

= B0(k, k̂)
1 + χ(k − �k, k̂)

1 + χ(k, k̂)
. (11)

Substituting this into equation (10), one obtains

ξ(k, k̂) = B(k, k̂)

B0(k, k̂)
− 1 = 1 + χ(k − �k, k̂)

1 + χ(k, k̂)
− 1 = χ(k − �k, k̂) − χ(k, k̂)

1 + χ(k, k̂)
. (12)

The difference in the numerator can be expanded to yield

ξ = −�kχ ′ + 1/2(�k)2χ ′′ + · · ·
1 + χ

. (13)

Thus, to first order in �k,

ξ(k, k̂) = −�k
χ ′(k, k̂)

1 + χ(k, k̂)
. (14)

Solving this first-order differential equation yields

χ(k, k̂) = exp

(
−
∫

ξ(k, k̂)

�k
dk

)
− 1. (15)

This equation is very similar to equation (8), which is not surprising because the two methods
are closely related. Once χ(k) is deduced, the rest of the calculation is the same as the
traditional holographic method. Unlike the derivative method, the quantity �k here depends
on k, and is determined by the spin–orbit splitting.

The branching ratio (and the intensity function itself) can exhibit at least two types of
modulations. In addition to the diffraction modulation discussed so far, atomic cross section
variations and crystal field effects can give rise to pronounced angular patterns [23, 24]. These
patterns are generally slowly varying in angle, and the effects are mostly eliminated by the use
of a small backscattering cone [15].
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Figure 4. Typical photoemission spectra from As/Si(111)-(1 × 1) for (a) the As 3d core and
(b) the Si 2p core. Circles are data points and curves are fits. These spectra were taken with a
normal emission geometry (θ = 0). The Si 2p core is decomposed into the surface (S) and bulk
(B) components.

4. Experimental results

Our photoemission measurements were carried out at the 1 GeV storage ring Aladdin at
the Synchrotron Radiation Center (Stoughton, WI). Several beamlines were used for data
acquisition. Each system required at least a week, and more typically two or more weeks
of beam time. A hemispherical analyser with a full acceptance cone angle of ±1.5◦ was
employed in the measurements. Each core level spectrum was fitted using Voigt lineshapes
to represent individual core level components, from which the peak intensities and branching
ratios are deduced.

4.1. As on Si(111)

We will begin with a discussion of As terminated Si(111) [14, 15]. The structure of this system
is a bulk-terminated Si(111) with the top layer replaced by As forming a (1 × 1) adlayer. Its
simple structure makes it an ideal test case. Figure 4 shows some typical spectra taken from
both the Si 2p and the As 3d core levels. The As spectrum shows two spin–orbit-split peaks,
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Figure 5. Results for As/Si(111): (a) logarithmic derivative of the As 3d intensity and (b) the
corresponding χ function as a function of photoelectron wave vector for a polar angle θ = 30◦ and
an azimuthal angle φ = 46◦; (c) logarithmic derivative of the chemically shifted Si 2p1/2 intensity
and (d) the corresponding χ function as a function of photoelectron wave vector for θ = 30◦ and
φ = 47◦. The corresponding results based on branching ratio measurements are shown in (e)–(h).

while the Si spectrum shows two sets of spin–orbit-split peaks. As labelled in the figure,
one of them (labelled S for surface) is derived from the top layer of Si directly bonded to the
surface As, and the other (labelled B for bulk) is derived from the rest of the Si crystal. The S
component has a significantly larger binding energy, and the chemical shift is caused by direct
bonding to the highly electronegative As.

For the As 3d core level, 38 spectra evenly spaced in k within the range of 2.4 Å−1 <

k < 6.4 Å−1 were measured for each of 44 different emission directions roughly evenly spaced
over a polar angle range of θ = 0◦ to 70◦ and an azimuth angle range of φ = 0◦ to 60◦ (φ =
0 corresponds to [21̄1̄]). Threefold rotation and mirror symmetry operations expanded the
effective number of angles to 238, corresponding to a total of more than 8800 points in k
space. A similar set of data from the Si 2p core level was also taken. The branching ratio is
directly determined from a least-squares fit to each spectrum. The logarithmic derivative is
obtained by doing the necessary calculations using a pair of spectra. During the measurement
of a pair, care was taken not to change or disturb the system; in other words, slit changes,
grating changes, ring re-injection etc, were not allowed, and data were simply discarded if any
accidental mechanical disturbances occurred.

The upper-left panel in figure 5 shows a logarithmic derivative function derived from the
As 3d core level for an arbitrarily chosen emission direction. The corresponding χ function
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deduced from equation (8) is also shown. The upper-right panel shows a branching ratio
function and the corresponding χ function deduced from equation (15) for the same core
and the same emission direction. The two methods should yield the same χ function. A
comparison shows that the χ functions deduced from the two methods are indeed very similar.
The maxima and minima occur at the same energies. The differences in peak heights can be
attributed to experimental uncertainties (data noise) and systematic errors (higher order terms
ignored in the analytical formula). Both the experimental uncertainties and systematic errors
are on the order of 1% in I, or ∼10% in the χ function. The discrepancies in peak height
are less of a problem since only the oscillation periods are relevant to the atomic positions.
The two lower panels in figure 5 provide a similar comparison for the chemically shifted
Si 2p core for an arbitrary chosen emission direction. Again, the derived χ functions show
good agreement in the positions of the maxima and minima.

The image functions derived from the two methods are shown in figure 6. The results
based on the derivative (branching ratio) method are presented on the left (right). Displayed
in this figure are planar slices through the image functions. The first three images in each case
are derived from the As 3d core level, and the bottom panel is derived from the chemically
shifted Si 2p core level. Shown in the middle are ball–stick models with the emitter and the
slicing planes indicated. The structure, as discussed earlier, is a bulk terminated Si lattice with
the top layer replaced by As. The crosses in each image indicate the expected positions of
scattering atoms based on an average of available theoretical and experimental results. Stars
indicate the position of the origin of the image function (position of the emitter).

Figures 6(a) and (e) show a vertical slice through the As emitter and one of the three
pedestal Si atoms. The images show the pedestal atom as a bright intensity maximum. Below
this atom, one can also see the Si atom bonded in the layer below. The intensity associated
with this second-layer Si atom is dimmer due to inelastic scattering attenuation and wave
expansion. In each of these two images, there is also a very weak, barely visible feature on
the left-hand side, which can be attributed to a ghost due to the approximations employed in
the holographic analysis.

Figures 6(b) and (f) show images in a horizontal slice across the three pedestal Si atoms,
and the three atoms are clearly visible. In addition, there is a faint ring-like feature in between
the three atoms. This is the same ghost feature mentioned above. Figures 6(c) and (g) are
horizontal slices across the second layer of Si atoms below the As. Since the intensities are
lower, the images have been amplified by a factor of 1.5 to show details. The bottom images
in figure 6 are derived from the chemically shifted Si 2p core. The emitter position is different
from that in the previous images, and the results show the Si atom in the second layer directly
underneath the emitter in agreement with the model. Since forward scattering is not included
in the analysis, the As atom above does not appear in the image.

These results demonstrate an excellent agreement between the branching ratio and the
derivative results. The atomic positions in the holographic images are also in good agreement
with the average positions determined in previous experimental and theoretical studies. The
discrepancy is less than ∼0.2 Å. This experiment was designed for an accuracy of ∼10% in
the χ function, which translates into a ∼0.2 Å accuracy in bond length for the first neighbours.

4.2. Bi on Si(111)

Most of the photoelectron holography work to date has dealt with simple model systems with
a known structure, and the purpose has been to demonstrate that the method works. It would
be interesting to apply photoelectron holography to cases where the structure is unknown, or
where the structure is controversial based on other experimental results. Bi on Si(111) is one
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Figure 6. Planar slices of the image function for As/Si(111) through various atomic planes
as indicated in the accompanying ball–stick model drawings. The grey scales used for image
presentation are indicated near the top of the figure by a linear mapping of the intensity levels into
grey levels. (a)–(d) are results based on the logarithmic derivative method, and (e)–(h) are results
based on the branching-ratio method. In each case, the top three panels are images obtained from
the As 3d data, and the bottom panel is an image obtained from the Si 2p data. The intensity level
for images (c) and (g) has been amplified by a factor of 1.5 to improve visibility.
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Bi
First Layer Si
Second Layer Si

[110]

[112]
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, y

, x

Figure 7. Structural models for Bi on Si(111): (a) the honeycomb model and (b) the trimer model
viewed from above. The coordinate system is indicated. The (1 × 1) and (

√
3 × √

3)R 30◦ unit
cells are outlined.

of those simple adsorbate systems for which there has been considerable debate about the
structure.

This system exhibits a (
√

3 × √
3)R 30◦ reconstruction for a range of Bi coverage near

one monolayer (ML). Numerous studies have yielded two competing models: (i) a honeycomb
model with an ideal coverage of two-thirds of ML, in which the Bi atoms are located in the
on-top T1 sites directly above the top layer Si atoms; and (ii) a trimer model with an ideal
coverage of one ML, in which the Bi atoms are laterally displaced from the T1 sites to form
trimers. These two models are displayed in figures 7(a) and (b), respectively. The key question
is whether or not this lateral displacement is zero, which sets these two models apart. Because
this displacement averages to zero over a trimer unit, this is a relatively difficult problem for
standard diffraction methods. The holographic technique is ideally suited for such a situation.

Both the derivative method and the branching ratio method have been applied to this
system [11, 12]. The results are very similar. Only the images from the derivative method are
presented here. Figure 8(a) is a vertical slice through the Bi emitter (the origin) in an xz plane.
If the honeycomb model were correct, we would expect to see a single intensity maximum
below the origin corresponding to the Si atom bonded directly underneath the Bi. Instead,
there are two resolved maxima, with the one on the right being more intense. A horizontal
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Figure 8. (a) A vertical and (b) a horizontal planar slice through the image function for Bi/Si(111).
The coordinate system is as defined in figure 7, and the origin, indicated by a star in (a), is at the
emitter position.
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slice of the image function in an xy plane through these maxima is shown in figure 8(b). Three
intensity maxima are present in this plane forming an equilateral triangle. This rules out the
honeycomb model.

For the trimer model, each Bi adatom has one Si atom bonded below it and offset to one
side. The three Bi atoms in a trimer unit each gives rise to an intensity maximum, and the final
holographic image is a sum of the three separate images, and should exhibit three intensity
maxima. This is exactly what the holographic images show. In addition, the orientation of the
three intensity maxima in figure 8(b) agrees with the crystallographic orientation as illustrated
in figure 7(b), which was verified by x-ray diffraction. The intensity maximum in figure 8(a)
on the right corresponds to one of the three Si atomic positions, and the less intense maximum
on the left corresponds to the saddle point in between the other two Si atomic positions. These
results confirm that the trimer model represents the correct structure.

5. Summary and concluding remarks

Photoelectron holography has emerged as a powerful method for model-independent
determination of surface structure, and for sorting out competing models that are difficult to
distinguish by other techniques. However, such experiments require a large data set with high
precision, and maintaining the required precision over the entire data set can be difficult. This
paper reviews two methods that avoid the need for global precision in intensity measurements.
These are the logarithmic derivative method and the branching ratio method. Both of these
methods are based on intensity self-normalization, and the results are thus independent of the
incident beam intensity and detector efficiency. Using As/Si(111) as an example, we show
that the two methods yield the same and correct atomic structure. These methods are also
employed to clarify the highly debated structure of Bi/Si(111).

The concept of intensity self-normalization and differential measurements is not
necessarily limited to the two methods presented here. There is a large literature on photo-
electron diffraction and holography based on angular patterns in intensity and branching
ratio. Differential measurements involving small angular changes can be similarly employed
to construct a hologram. Another possibility is to modulate the incident synchrotron beam
polarization state as in ellipsometry or dichroism measurements. Such methods might offer
additional capabilities or utilities.
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